$\displaystyle{3a^2 - 8a + 4}$
${\displaystyle{(3a-2)(a-2)}}$
$\displaystyle{16a^4 - 1}$
${
\begin{array}{rcl}
&=& (4a^2 - 1)(4a^2 + 1)\\
&=& \fbox{$(2a-1)(2a+1)(4a^2 +1)$}
\end{array}}$
$\displaystyle{2x^2 + 2xy - 3x - 3y}$
${
\begin{array}{rcl}
&=& (2x^2 + 2xy) + (-3x - 3y)\\
&=& 2x(x + y) - 3(x + y) \\
&=& \fbox{$(2x - 3)(x + y)$}
\end{array}}$
$\displaystyle{4z^3 - 32}$
${
\begin{array}{rcl}
&=& 4(z^3-8)\\
&=& \fbox{$4(z-2)(z^2+2z+4)$}
\end{array}}$
$\displaystyle{x^2 - 2x + 1 - z^2}$
${
\begin{array}{rcl}
&=& (x^2 - 2x + 1) - z^2\\
&=& (x - 1)^2 - z^2\\
&=& \fbox{$(x - 1 + z)(x - 1 - z)$}
\end{array}}$
$\displaystyle{x^3 + 2x^2 - 3x - 6}$
${
\begin{array}{rcl}
&=& (x^3+2x^2) + (-3x-6)\\
&=& x^2(x+2) - 3(x+2)\\
&=& \fbox{$(x^2 - 3)(x+2)$}
\end{array}}$
$\displaystyle{24x + 144 + x^2}$
${\displaystyle{(x+12)^2}}$
$\displaystyle{8x^3 - 1}$
${\displaystyle{(2x-1)(4x^2+2x+1)}}$
$\displaystyle{6x^3 + 48}$
${
\begin{array}{rcl}
&=& 6(x^3+8)\\
&=& \fbox{$6(x+2)(x^2-2x+4)$}
\end{array}}$
$\displaystyle{9x^2 - 30x + 25}$
${\displaystyle{(3x-5)^2}}$
$\displaystyle{9x^2 + 6xy + y^2 - 4}$
${
\begin{array}{rcl}
&=& (9x^2 + 6xy + y^2) - 4\\
&=& (3x+y)^2 - 4\\
&=& \fbox{$(3x+y-2)(3x+y+2)$}
\end{array}}$
$\displaystyle{x^4 + xy^3 + 4yx^3 + 4y^4}$
${
\begin{array}{rcl}
&=& (x^4 + xy^3) + (4yx^3 + 4y^4)\\
&=& x(x^3+y^3) + 4y(x^3+y^3)\\
&=& (x+4y)(x^3+y^3)\\
&=& \fbox{$(x+4y)(x+y)(x^2-xy+y^2)$}
\end{array}}$
$\displaystyle{2x^4 - 2y^2 - 4y - 2}$
${
\begin{array}{rcl}
&=& 2(x^4-y^2-2y-1)\\
&=& 2(x^4 - (y^2+2y+1))\\
&=& 2(x^4 - (y+1)^2)\\
&=& 2(x^2 + (y+1))(x^2 - (y+1))\\
&=& \fbox{$2(x^2+y+1)(x^2-y-1)$}
\end{array}}$
$\displaystyle{2x^3+4x^2-x-2}$
${
\begin{array}{rcl}
&=& (2x^3+4x^2) + (-x-2)\\
&=& 2x^2(x+2) - (x+2)\\
&=& \fbox{$(2x^2-1)(x+2)$}
\end{array}}$
$\displaystyle{16b^3-2a^3}$
${
\begin{array}{rcl}
&=& 2(8b^3-a^3)\\
&=& \fbox{$2(2b - a)(4b^2 +2ab + a^2)$}
\end{array}}$
$\displaystyle{2x^4 - 6x^3 - 20x^2}$
${
\begin{array}{rcl}
&=& 2x^2(x^2-3x-10)\\
&=& \fbox{$2x^2(x-5)(x+2)$}
\end{array}}$
$\displaystyle{128x^6 - 2y^6z^{12}}$
${
\begin{array}{rcl}
&=& 2(64x^6-y^6 z^12)\\
&=& 2(8x^3-y^3 z^6)(8x^3+y^3 z^6)\\
&=& \fbox{$2(2x-yz^2)(2x+yz^2)(4x^2+2xyz^2+y^2z^4)(4x^2-2xyz^2+y^2z^4)$}
\end{array}}$
$\displaystyle{x^3 + y^3 + 3y^2 + 3y + 1}$
${
\begin{array}{rcl}
&=& x^3 + (y^3 + 3y^2 + 3y + 1)\\
&=& x^3 + (y+1)^3\\
&=& (x + (y+1))(x^2 - x(y+1) + (y+1)^2)\\
&=& \fbox{$(x+y+1)(x^2-xy-x+y^2+2y+1)$}
\end{array}}$
$\displaystyle{9x^2 - 6xy + y^2 - 25}$
${
\begin{array}{rcl}
&=& (9x^2 - 6xy + y^2) - 25\\
&=& (3x-y)^2 - 25\\
&=& \fbox{$(3x-y-5)(3x-y+5)$}
\end{array}}$