If $\displaystyle{f(x) = \frac{11x}{x-7}}$, find the following:
$f(2)$
$f(7)$
$f(a-2)$
If $\displaystyle{f(x) = \frac{4}{3 | x |}}$, find the following:
$f(1)$
$f(-1)$
the domain of $f$
Let $f(x)=x^2-4$. Find and simplify the following:
$\displaystyle{f(3)}$
$\displaystyle{f(2c)}$
$\displaystyle{f(x+1)}$
$\displaystyle{f(x+\Delta x)}$
$\displaystyle{\frac{f(x)-f(-1)}{x+1}}$ (assume $x \neq -1$)
$\displaystyle{\frac{f(x+\Delta x) - f(x)}{\Delta x}}$ (assume $\Delta x \neq 0$)
For each of the following, find and simplify $\displaystyle{\frac{f(x+h)-f(x)}{h}}$ (You may assume that $h \neq 0$)
$\displaystyle{f(x) = 7x-6}$
$\displaystyle{f(x) = 4x^2 - x}$
$\displaystyle{f(x) = 5x^3 - 2x^2}$
Find the domain of the following functions:
$\displaystyle{f(x) = \frac{5x}{x^2-9}}$
$\displaystyle{f(x) = \sqrt{6-x}}$
$\displaystyle{g(x) = x^2 - 2 \left| x \right| + \frac{1}{3} + 7x^3}$
$\displaystyle{h(x) = \frac{7x}{2x^2 - 5x - 3}}$
$\displaystyle{g(x) = \sqrt{2x-15}}$
$\displaystyle{f(x) = \frac{3-4x}{x^2 + x - 6}}$
$\displaystyle{g(x) = \frac{3x^3 + 2}{\sqrt{x-4}}}$
$\displaystyle{f(x) = 4x^3 + 5x^2 - \frac{2}{3} x + \sqrt{7}}$
$\displaystyle{q(x) = \frac{4}{x^2+3x-4}}$
If $\displaystyle{f(x) = \frac{3}{x-1} \textrm{ and } g(x) = 5x+2}$, find the following:
The domain of $f$
The domain of $g$
$\displaystyle{(f + g)(x)}$ and it's domain
$\displaystyle{(f - g)(x)}$ and it's domain
$\displaystyle{(f \circ g)(x)}$ and it's domain
$\displaystyle{\left( \frac{f}{g} \right) (2)}$
$\displaystyle{(f \cdot g) (x)}$
If $\displaystyle{f(x) = 2x+2 \textrm{ and } g(x) = \frac{x-3}{x+1}}$, find the following:
The domain of $f$
$\displaystyle{(f + g)(x)}$ and it's domain
$\displaystyle{(f - g)(x)}$ and it's domain
$\displaystyle{(f \circ g)(x)}$
$\displaystyle{(f/g)(x)}$ and it's domain
$\displaystyle{(f - g) (2)}$
Find the domain of the function:
If $f(y) = 2y^2 - 3y$ and $g(t) = t^2 - 9$, solve $(g \circ f)(x) = 0$
If $f(x) = x(x+2)$ and $\displaystyle{g(x)=\frac{1}{x |x^2 - 3|}}$, find the domain of $fg$.