Add or subtract the polynomials given, as indicated:
$\displaystyle{(3y^2+5y-7)+(2y^2-7y+10)}$
$\displaystyle{(6n^2 - 3n + 4) + (3n^3 - n^2)}$
$\displaystyle{(4x^3+3x^2+2x+1) + (x^3 + 2x^2 + 3x + 4)}$
$\displaystyle{(x^3-3x^2y+4xy^2+y^3)+(7x^3+x^2y-9xy^2+y^3)}$
$\displaystyle{(7m^2+9m+3) \, - \, (3m^2 + 8m + 2)}$
$\displaystyle{(4x+11)-(3x^2+7x-3)}$
$\displaystyle{(5xy^4 - 7xy^2 + 4x^2 - 3) \, - \, (-3xy^4 + 2xy^2 - 2y + 4)}$
$\displaystyle{(2x^3-5x^2y+xy^2-y^3)-(8x^3-x^2y-3xy^2+y^3)}$
Multiply:
$\displaystyle{(3x+2)(5x-7)}$
$\displaystyle{(x-7)(-2x+5)}$
$\displaystyle{(3x+y)(7x-3y)}$
$\displaystyle{(11x-3)(11x+3)}$
$\displaystyle{(2b+1)(2b-1)(3b-4)}$
$\displaystyle{(5w-3)^2}$
$\displaystyle{(2q+3)^3}$
$\displaystyle{(x+1)^4}$
$\displaystyle{(2x-3)^4}$
$\displaystyle{(2x^3 - 5y)^2}$
$\displaystyle{(x+t)(x^2-xt+t^2)}$
$\displaystyle{(5a + 4b)^3}$
$\displaystyle{3x(4xy^3-7x^2y-3y)}$
$\displaystyle{(2a-3b)(3a+4ab+b)}$
$\displaystyle{(y+4)(y^2-7y+12)}$
$\displaystyle{(x^2+2x-3)(5x^2+3x-7)}$
$\displaystyle{(4m^2-m+8)(m^3+2m^2+3m+4)}$
Expand and Simplify:
$\displaystyle{(x+1)^3+(x+1)^2+(x+1)+1}$
$\displaystyle{(2-x+3y)(2-x-3y)(4x^3-3+2x) + (5x-3)^3}$