Simplify:
$\displaystyle{\sqrt[4]{81} + \sqrt[5]{-32}}$
$\displaystyle{(\sqrt{3} - \sqrt{7})(\sqrt{3} + \sqrt{7})}$
$\displaystyle{(5x^2 - \sqrt{2})^2}$
$\displaystyle{8\sqrt{5} + \frac{25}{\sqrt{5}}}$
$\displaystyle{3\sqrt{32} - 2\sqrt{18} - \sqrt{8}}$
$\displaystyle{\frac{\sqrt[3]{(x+1)^4} \sqrt{(x+1)^3}} {\sqrt[6]{(x+1)^5}}}$
$\displaystyle{\frac{\sqrt[3]{(a+b)^5} \cdot \sqrt[4]{(a+b)^2}}{\sqrt{(a+b)^3}}}$
$\displaystyle{\sqrt[4]{\frac{x^8 y^4 z^{16}}{w^8}}}$
$\displaystyle{\sqrt[3]{a^4} - \frac{\sqrt[3]{a^2}}{\sqrt[3]{a^{-1}}}+\sqrt[3]{\frac{27}{a^{-1}}}}$
Rationalize the denominator:
$\displaystyle{\frac{\sqrt[3]{12}}{\sqrt[3]{9}}}$
$\displaystyle{\frac{5}{\sqrt[3]{2xy^2}}}$
$\displaystyle{\frac{2\sqrt{z}}{\sqrt{z} + 7}}$
$\displaystyle{\frac{2-a}{\sqrt{b}-\sqrt{5}}}$
$\displaystyle{\frac{\sqrt[3]{xy}}{\sqrt[3]{9ab^2}}}$
$\displaystyle{\frac{2a}{3\sqrt{a} + 2\sqrt{b}}}$
Convert to exponential notation and simplify:
$\displaystyle{\sqrt[6]{\frac{a^{12} b^{18}}{3^6}}}$
Write as a single radical and simplify:
$\displaystyle{\frac{\sqrt{(2x-3)^3} \cdot \sqrt[4]{2x-3}}{\sqrt[3]{(2x-3)^4}}}$
Simplify, writing in radical notation if appropriate:
$\displaystyle{\left( \frac{d^{-2/3}}{9b^{-2}} \right)^{-1/2}}$
$\displaystyle{\frac{\sqrt{9x^2y^{-1}} \sqrt{2^{-1} x^{-1} y^2}}{\sqrt{2x^2 y^3}}}$
$\displaystyle{\frac{ \left( \sqrt{x} + \sqrt{x^3} \right)^2}{2^0 \, x \, \sqrt[17]{\sqrt[3]{x} \cdot \sqrt{x^5}}}}$
$\displaystyle{\frac{-1}{\sqrt{51} \, - \, \sqrt{6}} \, + \, \sqrt[3]{\frac{2}{1215}} \, - \, \frac{1}{\sqrt[3]{18} + 3} \, + \, \frac{\sqrt{3}}{9\sqrt{5}}}$