Solve the following equations involving only a single occurrence of a variable:
$\displaystyle{3x-7=0}$
$\displaystyle{\frac{5x^3+2}{7}=6}$
$\displaystyle{\frac{1}{3-\frac{1}{x}}=\frac{4}{11}}$
$\displaystyle{(\sqrt[3]{x}+5)^{-1}=2}$
$\displaystyle{2x^4-8=0}$
Solve by completing the square, and then check your answer by using the quadratic formula:
$\displaystyle{3x^2 - 4x - 2 = 0}$
$\displaystyle{z^2 + 8z - 3 = 0}$
$\displaystyle{2x^2 + 5x - 1 = 0}$
$\displaystyle{5x^2 = 13 - 2x}$
Solve the following:
$\displaystyle{3 = x(5x-1)}$
$\displaystyle{\sqrt{4-2x} - 2 = x}$
$\displaystyle{2t^{-2} + 5t^{-1} - 3 = 0}$
$\displaystyle{c^{2/3} - c^{1/3} - 2 =0}$
$\displaystyle{2x^{-2} + 3x^{-1} + 1 = 0}$
$\displaystyle{3 \left( \frac{5}{x-1} \right)^2 + \left( \frac{5}{x-1} \right) - 2 = 0}$
Solve for $x$:
$\displaystyle{x(5x-2)=4}$
$\displaystyle{z = 36z^3}$
$\displaystyle{\frac{2x-1}{x^2+2x-8} - \frac{3}{2-x} = \frac{2}{x+4}}$
$\displaystyle{x^4 + x^2 - 12 = 0}$
$\displaystyle{1+ \sqrt{2x+1} = x}$
$\displaystyle{2x(x+2) = 3}$
$\displaystyle{2x^3 + x^2 - 2x - 1 = 0}$
$\displaystyle{\frac{x}{x+2} + \frac{2}{x-3} = \frac{10}{x^2 - x - 6}}$
$\displaystyle{4x^{-2} - x^{-1} - 5 = 0}$
$\displaystyle{a^{2/3} - 3a^{1/3} - 10 = 0}$
$\displaystyle{(a^2 - 1)^2 - (a^2 - 1) - 2 = 0}$
$\displaystyle{\left( \frac{x+1}{x} \right)^2 + 2 \left( \frac{x+1}{x} \right) - 3 = 0}$
$\displaystyle{(6x^3 + x^2 - 35x)(49 - x^4) = 0}$
$\displaystyle{5\sqrt[3]{x^2} - 4\sqrt[3]{x} = 1}$
$\displaystyle{4 \left( \frac{\sqrt[3]{x+1}}{7} + 2 \right)^5 = \frac{1}{8}}$
$\displaystyle{x^4 - 9 = -2x^2}$
$\displaystyle{(2x^4 + 30x^3 + 150x^2 + 250x)(4x^2 - 4x + 1) = 0}$
$\displaystyle{4 \left( \sqrt{\frac{x+1}{2}} + \frac{\sqrt{2x-4}}{4} \right) = 5\sqrt{2}}$
$\displaystyle{x^3 + 2x^2 - 3ax = 6a}$
Solve:
$\displaystyle{\frac{x-3}{x+3}=\frac{2}{x}}$
$\displaystyle{2x^2-11=0}$
$\displaystyle{2x^2+5x=3}$
$\displaystyle{x-3(2-x)=2(x+1)-2}$
$\displaystyle{x^4-13x^2+36=0}$
$\displaystyle{x^2+2x=5}$
$\displaystyle{\frac{x}{2x+1}+\frac{1}{x+2}=2}$
$\displaystyle{\sqrt{4-x^2}=1}$
$\displaystyle{18x^2=9x+20}$
$\displaystyle{2x^2+13x-7=2x-7}$
$\displaystyle{x^3=x}$
$\displaystyle{x=2\sqrt{x}-1}$
Solve:
$\displaystyle{x^{2/3} + x^{1/3} - 6 = 0}$
$\displaystyle{x^{11/3}+7x^{8/3} + 12x^{5/3} = 0}$
$\displaystyle{(x+2)^{-2} + (x+2)^{-3} = 0}$
$\displaystyle{4(3x+2)^3 \cdot 3(x+5)^{-3} - 3(x+5)^{-4} \cdot (3x+2)^4 = 0}$
$\displaystyle{5x^3(3x+1)^{2/3} + 3x^2(3x+1)^{5/3} = 0}$