Show whether each of the following equations is or is not an identity:
$\displaystyle{\frac{\sin \theta}{\cos \theta} = 1 - \frac{\cos \theta}{\sin \theta}}$
$\displaystyle{1 - \cos^4 \theta = (2 - \sin^2 \theta) \sin^2 \theta}$
$\displaystyle{1 - 2\sin^2 \theta = 2\cos^2 \theta - 1}$
$\displaystyle{\frac{\sec \theta - \csc \theta}{\sec \theta + \csc \theta} = \frac{\tan \theta + 1}{\tan \theta - 1}}$
$\displaystyle{\frac{\sec^4 t - \tan^4 t}{1 - 2\tan^2 t} = 1}$
$\displaystyle{\sin^2 \theta \cot^2 \theta + \cos^2 \theta \tan^2 \theta = 1}$
$\displaystyle{\sec \theta - \frac{\cos \theta}{1 + \sin \theta} = \cot \theta}$
$\displaystyle{\frac{\tan^2 x}{1 + \cos x} = \frac{\sec x - 1}{\cos x}}$
$\displaystyle{(\csc t - \cot t)^2 = \frac{1 - \cos t}{1 + \cos t}}$
$\displaystyle{1 + \frac{1}{\cos \theta} = \frac{\tan^2 \theta}{\sec \theta - 1}}$
not an identity
identity
identity
not an identity
not an identity
identity
not an identity
identity
identity
identity