Differentiate. Simplify your answers, as appropriate.
$y = (\ln x)^x$
$y = (x^2 - 3)^{\cos x}$
$y = \ln x^{2x} + (\ln x)^{2x} - \ln e^{x^2}$
$\displaystyle{y = \ln \left( \frac{e^{x^2-4}}{x-2} \right)}$
$y = (\cot^2 x^3) (\sec^2 x^3)$
$y = (\cos x^2)^{2x}$
$f(x) = (\tan x)^{\sin x}$
$y = \ln x^2 + (\ln x)^2 - \ln e^{x^2} + e^{x^2}$
$y = x^{2x+1}$
$y = 3^{\csc 5x}$
$y = (x^2+1)^{\ln x}$
$y = \ln (\sin x)^{\cos x}$
$y = (\ln x)^{\cos x}$